

SECTION A:

(Questions 1 to 25)

25 marks

Answer each question by shading in with HB pencil, the circle directly under the correct alternative A, B, C or D. If you make a mistake, rub it out completely using an eraser and shade the correct answer on the Electronic

Answer Sheet.

QUESTION 1

When the surd $\frac{1}{1-\sqrt{2}}$ is rationalized it may appear in the form $\frac{1+\sqrt{2}}{x}$. What is the value of \boldsymbol{x} ?
A. -2
B. -1
C. 1
D. 2

QUESTION 2

The expression $\sqrt{32 a}-\sqrt{50 a}+\sqrt{18 a}$ in simplest surd form is
A. 0
B. $2 \sqrt{a}$
C. $2 \sqrt{2 a}$
D. $4 \sqrt{2 a}$

QUESTION 3

The graph of the parabola $y=a x^{2}+b x+c$ intersects the x-axis twice if:
A. $b^{2}-4 a c=0$
B. $b^{2}-4 a c>0$
C. $\mathrm{b}^{2}-4 \mathrm{ac}<0$
D. $b^{2}+4 a c=0$

QUESTION 4

The expression $\left(\frac{x^{4}-1}{x^{2}-1}\right)$ in its simplest form is
A. $\frac{x-1}{x+2}$
B. $x+1$
C. $\frac{1}{x+1}$
D. $x^{2}+1$

QUESTION 5

The slope of the line $3 y+2 x+5=0$, is
A. $-\frac{3}{2}$
B. $-\frac{2}{3}$
C. $\frac{2}{3}$
D. $\frac{3}{2}$

QUESTION 6

The following data are Maths test marks out of 10 for eleven students: 5, 6, 4, 10, 8, 7, 7, 9, 3, 6, and 4 . What is the median mark?
A. 6
B. 6.3
C. 7
D. 8

QUESTION 7

$\frac{(n+2)!}{n!}$ is equal to
A. 2 !
B. n !
C. $(n+2)$
D. $(n+2)(n+1)$

QUESTION 8

The circle $(x+2)^{2}+(y-3)^{2}=5$ has centre and radius of
A. $(2,-3), 5$
B. $(-2,3), 5$
C. $(-2,3), \sqrt{5}$
D. $(-2,-3), \sqrt{5}$

QUESTION 9

Consider the set $\mathbf{A}=\{2,4,6,8,10\}$.
Which of the following is not a subset of \mathbf{A} ?
A. $\{2,4\}$
B. $\{6,8,10\}$
C. $\{1,2,4\}$
D. $\{2,4,6,8,10\}$

QUESTION 10

The sum of the first 50 terms of an arithmetic series with first term 1 and common difference 2 is
A. 2,500
B. 25,000
C. 250,000
D. 250

QUESTION 11

Given that $\sin \emptyset=\frac{4}{5}$, when \emptyset is an acute angle, the exact value of $\sec \varnothing$ is
A. $\frac{3}{5}$
B. $\frac{3}{4}$
C. $\frac{5}{9}$
D. $\frac{5}{3}$

QUESTION 12

In the diagram below

$$
\overrightarrow{A B}=\underset{\sim}{\boldsymbol{u}}, \overrightarrow{A D}=\underset{\sim}{\boldsymbol{v}} \text { and } \overrightarrow{A C}=\underset{\sim}{w}
$$

Express $\overrightarrow{B D}$ in terms of $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w}.

A. $w-u$
B. $\underset{\sim}{v}-\mathcal{U}$
C. $\mathfrak{u}+w$
D. $v+\mathcal{U}$

QUESTION 13

The derivative of $3 x^{2}-1$ is
A. $6 x$
B. $3 x$
C. $3 x-1$
D. $6 x-1$

QUESTION 14

Given that $f(x)=\sin x$. The exact value of $f^{\prime}\left(\frac{\pi}{3}\right)$ is
A. $\frac{1}{\sqrt{2}}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\sqrt{3}$

QUESTION 15

If displacement is a function of time, the first derivative would represent
A. acceleration
B. distance
C. time
D. velocity

QUESTION 16

The solution to the quadratic equation
$2 x^{2}-x-6=0$ is
A. $x=-\frac{3}{2}$ or $x=-2$
B. $x=\frac{3}{2}$ or $x=-2$
C. $x=-\frac{3}{2}$ or $x=2$
D. $x=\frac{3}{2}$ or $x=2$

QUESTION 17

The graph of $\frac{|x|}{x}$ is

B.

QUESTION 18

In the $\Delta \mathrm{ABC}$ below, the length AC to the nearest centimetre is

A. 23 cm
B. 24 cm
C. 25 cm
D. 30 cm

QUESTION 19

An alloy consists of copper, zinc and tin in the ratio 1:3:4. If the weight of copper in the alloy is 10 g , then the weight of zinc and tin are respectively
A. 40 g and 50 g
B. 40 g and 30 g
C. 30 g and 40 g
D. 30 g and 50 g

QUESTION 20

The solution to the linear inequality
$2 x-5 \geq 4 x-6$ is
A. $x \leq-\frac{1}{2}$
B. $x \geq-\frac{1}{2}$
C. $x \leq \frac{1}{2}$
D. $x \geq \frac{1}{2}$

QUESTION 21

A marble is selected at random from a bag containing four red, three blue and two green marbles. What is the probability that it is red or blue?
A. $\frac{1}{9}$
B. $\frac{3}{9}$
C. $\frac{4}{9}$
D. $\frac{7}{9}$

QUESTION 22
The frequency distribution shows the scores of a Math course.

Score	Frequency
$0-10$	10
$11-20$	12
$21-30$	25
$31-40$	20
$41-50$	15
$51-60$	8
$61-70$	2

What is the mean score?
A. 13.14
B. 14
C. 30.43
D. 35

QUESTION 23

The circle $x^{2}+6 x+y^{2}+4 y+9=0$, expressed in the form; $\left(x-x_{o}\right)^{2}+\left(y-y_{o}\right)^{2}=r^{2}$ is
A. $(x+2)^{2}+(y-3)^{2}=5$
B. $x^{2}+y^{2}=5$
C. $(x-2)^{2}+(y+3)^{2}=5$
D. $(x+3)^{2}+(y+2)^{2}=4$

QUESTION 24

Provided $x>0$, the sum
$1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+$ \qquad is approximately equal to
A. 1
B. $\frac{1}{x}$
C. $\frac{1}{x+1}$
D. $\frac{x}{x-1}$

QUESTION 25

Given that
$(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\ldots \ldots+y^{n}$,
where $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
$(x-y)^{4}$ is equal to;
A. $x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$
B. $x^{4}-4 x^{3} y-6 x^{2} y^{2}-4 x y^{3}-y^{4}$
C. $x^{4}+4 x^{3} y-6 x^{2} y^{2}+4 x y^{3}-y^{4}$
D. $x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4}$

QUESTION 26

Given that $\boldsymbol{u}=-3 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k}$ and $\boldsymbol{v}=9 \boldsymbol{i}-2 \boldsymbol{j}+\boldsymbol{k}$, vector $\boldsymbol{u}-\boldsymbol{v}$ is
A. $12 \boldsymbol{i}-3 \boldsymbol{j}+3 \boldsymbol{k}$
B. $6 \boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}$
C. $-12 \boldsymbol{i}+3 \boldsymbol{j}-3 \boldsymbol{k}$
D. $-6 \boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}$

QUESTION 27

The motion of a projected particle is given by the equation $s(t)=6+t-t^{2}$, where \boldsymbol{s} is in metres and \boldsymbol{t} is in seconds. The velocity of the particle is zero at
A. $\mathrm{t}=0$ seconds
B. $\mathrm{t}=\frac{1}{2}$ second
C. $\mathrm{t}=1$ second
D. $\mathrm{t}=3$ seconds

QUESTION 28

The parabola $y=-x^{2}+x+6$ has a maximum value of
A. 6.25
B. 6
C. 6.5
D. 7

QUESTION 29

Provided $x \neq 0$, a geometric progression with $50^{\text {th }}$ term being $\frac{1}{x^{49}}$ and $10^{\text {th }}$ term $\frac{1}{x^{9}}$ has a common ratio of
A. $\frac{1}{x}$
B. x
C. $\frac{1}{x^{2}}$
D. $\frac{1}{x^{3}}$

QUESTION 30

In the diagram below, \boldsymbol{h} to the nearest metre is

A. 21 m
B. 25 m
C. 30 m
D. 40 m

SECTION B: 20 SHORT ANSWER QUESTIONS.

Each question is worth 1 mark.

QUESTION 31

Express $\log _{2} x-\log _{2} x^{2}+\log _{2} x^{3}$ as a single logarithm.

QUESTION 32

Rationalize $\frac{1}{\sqrt{2}}$

QUESTION 33

Factorize $-2 x^{2}+8 x-6$

QUESTION 34

Solve the linear inequality $2-x<x+3$

QUESTION 35

State the domain of function $f(x)=\log _{10} x$

QUESTION 36

Express the equation $y=\log _{b} x$ in index notation.

QUESTION 37

The vertical asymptote of the graph of $y=\frac{1}{x+4}$ is

QUESTION 38

A bag contains 4 yellow, 3 red and 7 white marbles. A single marble is drawn at random from the bag. What is the probability that it is not red?

QUESTION 39

Calculate the $31^{\text {st }}$ percentile of the following data set: 23 , $31,25,18,33,42,29,33,30,28,19,25$, and 18.

QUESTION 40
Given that set $A=\{1,3,4,6,9,10\}$ and set $B=\{2,4,6,8,10,12\}$. Find $A \cup B$.

QUESTION 41

Fully expand $(x+x y)^{2}$

QUESTION 42

Compute the sum to infinity of the geometric series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+$

QUESTION 43

The exact value of $\sin \left(\frac{-\pi}{4}\right)+\cos \left(\frac{-\pi}{3}\right)$ is

QUESTION 44

How many distinct 4- digit numbers can be formed using the digits $3,4,5,6,7$ without repetition?

QUESTION 45

Solve $\frac{7 x}{x+1}-1=0$

QUESTION 46

What would be the height of a rectangular solid with square base of area 25 square units and having volume equal to this cylinder?

QUESTION 47

If one PNG Kina buys 0.4380 Australian dollars on a particular day, how much would K200.00 be equivalent to in Australian dollars?

QUESTION 48

The square ABCD has area $4 \mathrm{~cm}^{2}$ and touches the circle at 4 points. Find the area of the shaded region, correct to the nearest cm^{2}.

QUESTION 49

Find the slope of the tangent line to the parabola $y=2 x^{2}+1$ at the point where $x=-1$.

QUESTION 50

What is the value of $\boldsymbol{\alpha}$ in the diagram?

