

QUESTION 1

Without using a calculator, find x given that $\log _{b} x=\frac{2}{3} \log _{b} 27+2 \log _{b} 2-\log _{b} 3$.

QUESTION 2

Solve the pair of equations simultaneously.
$y=3 x+2$ and $y=3 x^{2}+2 x-2$.

QUESTION 3

Solve the inequality $|3 x-5|<x+2$.

QUESTION 4

A bag contains two green marbles and two blue marbles. A marble is selected at random and without replacing it another marble is picked.
a) What is the probability of selecting two marbles of the same colour?
b) What is the probability of selecting at least a blue marble?
(3 marks)

QUESTION 5

Find the centre and radius of the circle $x^{2}+y^{2}-4 x+2 y-2=0$.

QUESTION 6

A survey of 100 college students revealed the following information.

26 take Mathematics, 65 take Physics, 65 take Chemistry, 14 take Mathematics and Physics, 13 take Mathematics and Chemistry, 40 take Physics and Chemistry and 8 take Mathematics, Physics and Chemistry.
a) Construct a Venn diagram to represent the above information.
b) How many students take neither Mathematics nor Physics?

QUESTION 7

The $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ terms of an arithmetic progression are $8-x, 3 x$ and $4 x+1$ respectively. Calculate the value of x, and find the sum of the first eight terms of the progression.

QUESTION 8

Given a rectangular cuboid ABCDEFGH, with sides $E F=5 \mathrm{~cm}, F G=8 \mathrm{~cm}$ and $B F=6 \mathrm{~cm}$.

a) Find the distance BH .
b) Find the angle $\angle B H F$.

QUESTION 9

The points A, B and C have position vectors $\underset{\sim}{a}, \underset{\sim}{b}$ and $\underset{\sim}{c}$.

Point P is a third of the distance $A B$ from A.

a) Find the position vector of P.
(3 marks)
b) Find the vector $\overrightarrow{P C}$.
(2 marks)

QUESTION 10

Using the First Principle, find $f^{\prime}(x)$ given $f(x)=2 x^{3}-4$.

