

PARTA: MULTIPLE CHOICE

(QUESTIONS 1 to 30)
30 MARKS
Answer each question by shading in with HB pencil the circle directly under the correct alternative A, B, C or D. If you make a mistake, rub it out completely using an eraser rubber and shade the correct answer on the Electronic Answer Sheet.

QUESTION 1

What is 1.08772 correct to four significant figures?
A. 1.088
B. 1. 090
C. 1. 0877
D. 1.0880

QUESTION 2

The quadratic equation $x^{2}-4 x+3=0$ has roots α and β. What is the value of $\alpha+\beta$?
A. -1
B. -3
C. 4
D. -4

QUESTION 3

Express $\frac{x^{5}-4 x}{x^{2}+2}$ in its simplest form.
A. $\frac{x}{x^{2}+2}$
B. $\frac{x^{2}+2}{x}$
C. $x\left(x^{2}-2\right)$
D. $x\left(x^{2}+2\right)$

QUESTION 4

The expression $2 \log _{2} x^{3}-\log _{2} x^{2}$ is equivalent to
A. $\log _{2} x$
B. $4 \log _{2} x$
C. $\log _{2} x^{5}$
D. $\log _{2}\left(\frac{1}{x}\right)$

QUESTION 5

The parabola $y=x^{2}-3 x-1$ intersect the line $y=3$ at the point
A. $x=-4$ and $x=1$
B. $x=1$ and $x=2$
C. $x=-1$ and $x=2$
D. $x=4$ and $x=-1$

QUESTION 6

The domain of the logarithm function $y=\log (2 x+1)$ is
A. $x>-\frac{1}{2}$
B. $x>0$
C. $0 \leq x \leq \frac{1}{2}$
D. $-\frac{1}{2} x<x<0$

QUESTION 7

What is the probability of picking a diamond card from a deck of 52 cards?
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{52}$

QUESTION 8

What is the average for a set of results given below?
$10,14,15,16,20$
A. 12
B. 13
C. 15
D. 18

QUESTION 9

The figure below gives two similar triangles.

What is the value of \mathbf{a} ?
A. 3
B. 6
C. 8
D. 10

QUESTION 10

The value of the determinant $\left|\begin{array}{ccc}1 & 2 & 3 \\ -1 & 2 & 3 \\ -2 & -4 & -6\end{array}\right|$ is equal to \qquad .
A. 24
B. 0
C. -12
D. -24

QUESTION 11

The total number of subsets of the set $\{\alpha, \beta, a, b\}$ is
A. 4
B. 6
C. 8
D. 16

QUESTION 12

Given $\cos \theta=\frac{4}{5}$ and θ is in the $1^{\text {st }}$ quadrant. Find the angle equivalent to θ between 0 and 360 degrees.
A. 36.86°
B. 143.14°
C. 216.86°
D. 323.14°

QUESTION 13

In the diagram below, $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are mid points of AB, BC and CA respectively.

If $\overrightarrow{A X}=r$ and $\overrightarrow{A Z}=s$.
Find $\overrightarrow{A Y}$.
A. $s+r$
B. $s-r$
C. $r-s$
D. $\frac{1}{2} s+r$

QUESTION 14

The value of $\int x^{2} d x$ is
A. $\frac{1}{2} x^{2}+c$
B. $\frac{1}{3} x^{3}+c$
C. $x^{3}+c$
D. $2 x+c$

QUESTION 15

Given that $y=2 x^{3}-\cos x, \frac{d y}{d x}$ is equal to
A. $\frac{1}{2} x^{4}-\sin x$
B. $\frac{1}{2} x^{4}+\sin x$
C. $6 x^{2}-\sin x$
D. $6 x^{2}+\sin x$

QUESTION 16

Evaluate $\left(\frac{571}{2 \pi}\right)^{\frac{1}{3}}$ correct to four significant figures.
A. 0.4496
B. 4.496
C. 44.96
D. 4496

QUESTION 17

The solution to the inequality $-2 x-\frac{1}{2} \leq-x-2$ is
A. $x \leq-\frac{3}{2}$
B. $x \geq \frac{3}{2}$
C. $x \leq \frac{3}{2}$
D. $x \geq-\frac{3}{2}$

QUESTION 18

What would a scatter graph for the relationship of height versus weight look like for the given data?

Weight (kg)	15	30	45	60	75
Height (cm)	75	100	110	160	170

QUESTION 19

What would a cumulative-histogram of the relationship in Question 18 look like?

QUESTION 20

In the diagram, the vertices of $\triangle \mathrm{ABC}$ lie on the circle with centre 0 . The point D lies on AC such that $\triangle \mathrm{ABD}$ is isosceles and $\angle \mathrm{BAC}=x$.

What is $\angle \mathrm{BDC}$ in terms of \mathcal{X} ?
A. x
B. $90-x$
C. $180-x$
D. $2 x$

QUESTION 21

Kapi is making a pattern using triangular tiles. The pattern has 3 tiles in the first row, 5 tiles in the second row and each successive row has 2 more tiles than the previous row.

How many tiles would Kapi use altogether to make the first 50 rows?
A. 2,600
B. 2,400
C. 2,500
D. 3,000

QUESTION 22

The $4^{\text {th }}$ term of the expansion $\left(2 x-3 y^{2}\right)^{10}$ is
A. $414,720 x^{6} y^{7}$
B. $-414,720 x^{7} y^{6}$
B. $414,720 x^{7} y^{6}$
C. $-414,720 x^{6} y^{7}$

QUESTION 23

The sketch of the function $f(x)=2+\sin x$ is given by
A

B

C

QUESTION 24

What is the value of θ in radians, given $\sin \theta+\frac{1}{2}=1$
A. π
B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

QUESTION 25

Given that $\int \cos (\beta x) d x=\frac{1}{\beta} \sin (\beta x)+c$.
The exact value of $\int_{0}^{\pi / 4} \cos 2 x d x$ is
A. 0
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. -1

QUESTION 26

A pmv bus uses 30 litres of diesel to travel 210 km . If diesel costs K 3.00 per litre, how much would it cost the bus operator on diesel to travel 300 km ? (Assume fuel consumption rate is constant).
A. K50. 00
B. K128. 57
C. K210. 00
D. K90. 00

QUESTION 27

The graph of the absolute value function $y=\left|2 x-\frac{1}{2}\right|$ is given by
A

B

C

D

QUESTION 28

How many 3-digit even numbers can you make from the values 2,3 and 4 ? You are to use them once.
A. 1
B. 2
C. 3
D. 4

QUESTION 29

A regular polygon of n sides has a sum of 1260 . Find n ?
A. 6
B. 8
C. 9
D. 12

QUESTION 30

What is the expression of the area between these curves?

A. $\int_{a}^{b}[g(x)-f(x)] d x$
B. $\int_{a}^{b}[f(x)-g(x)] d x$
C. $\int_{b}^{a}[g(x)-f(x)] d x$
D. $-\int_{b}^{a}[f(x)-g(x)] d x$

PART B: SHORT ANSWERS

20 MARKS
Write your answers on the Answer Sheet provided.

QUESTION 31

Express the recurring decimal 0.111 as a fraction.

QUESTION 32

The speed of a particle is 100 metres per second. What is this speed in $\mathrm{km} / \mathrm{hr}$?

QUESTION 33

Find the exact distance between the points $(5,-5)$ and $(1,1)$.

QUESTION 34

What is the solution to the linear inequality, $-5 x-3<2+x$?

QUESTION 35

The function $f(x)=|2 x-3|$ can be expressed as

$$
f(x)=\left\{\begin{array}{cc}
3-2 x, & x<\frac{3}{2} \\
-3+2 x, & t
\end{array}\right.
$$

Find t, the domain of $(-3+2 x)$

QUESTION 36

Express the logarithmic function $f(x)=\log _{e} e^{x}-2 \log _{e} e^{x^{2}}$ in its equivalent form without the \log function.

QUESTION 37

A bag contains 3 yellow, 2 red and 5 blue marbles. The first marble drawn out of the bag was not blue. If the marble was not placed back into the bag, what would be the probability of drawing out a blue marble in the second pick?

QUESTION 38

From question 37 , if the marbles are to be placed back into the bag, what is the probability of picking a yellow and then a blue?

QUESTION 39

Find the value of "b" given in the diagram below.

QUESTION 40

What test is used to show that these two triangles are congruent?

QUESTION 41

What is the equation of a circle of radius 5 , with centre at $(3,4)$?

QUESTION 42

Given that sets;
$A=\{x \in z: x$ is even $\}$
$B=\{1,2,3,4,5,6,7,8,9,10\}$
$C=\{x \in z:-5 \leq x<9\}$

Determine the set $A \cap B \cap C$.

QUESTION 43

Find the sum of the first 40 terms of a geometric series with first term -3 and common ratio $\frac{1}{2}$.

QUESTION 44

Evaluate the determinant.
$\left|\begin{array}{ccc}x & 1 & 2 \\ -3 & -2 x & 1 \\ 0 & \frac{1}{x} & 2\end{array}\right|$

QUESTION 45

Find the angle $\angle \mathrm{ACB}$ of the given triangle with sides $\mathrm{AB}=9 \mathrm{~cm}$ and $\mathrm{BC}=5 \mathrm{~cm}$. (Give your answer to the nearest degree).

QUESTION 46

Find $2 \mathbf{u}-\mathbf{v}$, if $\mathbf{u}=-\mathbf{i}+\mathbf{j}-2 \mathbf{k}$ and $\mathbf{v}=-2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$

QUESTION 47

Find the unit vector of $\mathbf{v}=3 \mathbf{i}+4 \mathbf{j}$

QUESTION 48

Evaluate $\int 2 x d x$.

QUESTION 49

What is the gradient of the curve $y=\sin x$ at the point where $x=\frac{\pi}{3}$?

QUESTION 50

At what point is the slope of the tangent line to the curve $y=e^{x}$ equal to one?

