INSTRUCTIONS TO CANDIDATES

SECTION A: (Questions 1 to 25) : 1 mark each

Answer each question by shading in with $H B$ pencil, the circle directly under the correct alternative A, B, C, D or E. If you make a mistake, rub it out completely using an eraser rubber and shade the correct answer on the Electronic Answer Sheet.

QUESTION 1

Douglas, Renae and Lynette were given K235.00 and told to divide it in the ratio 2:1:3 amongst themselves in order of names listed.

To he nearest toea each will receive
A. K39.17, K 120.00 , K78.33
B. K78.33, K39.17, K117.50
C. K117.50, K39.17, K140.00
D. None of the above

QUESTION 2

The solution of the quadratic equation $x^{2}-2 x-3=0$ is:
A. $x=3, x=1$
B. $x=-1, x=3$
C. $x=-3, x=1$
D. $x=2, x=2$

QUESTION 3

The solution to the equation $8 x^{\frac{1}{3}}-3=1$ is
A. $x=\frac{1}{2}$
B. $x=\left(\frac{1}{2}\right)^{\frac{1}{3}}$
C. $x=\frac{1}{8}$
D. $x=1 / 4$

QUESTION 4

A map has a scale of 1:25000.
What distance is represented by a length of 6.8 cm on the map?
A. $\quad 170 \mathrm{~km}$
B. $\quad 17.0 \mathrm{~km}$
C. $\quad 1.70 \mathrm{~km}$
D. 0.17 km

QUESTION 5

$\frac{(x-1)}{\left(x^{2}-1\right)}$ can be simplified to
A. $\frac{(x-1)}{(x+1)}$
B. $\frac{1}{(x+1)}$
C. 1
D. $x+1$

QUESTION 6

Which expression cannot be simplified any further?
A. $\frac{m-n}{n-m}$
B. $\frac{2 x-2 y}{y-x}$
C. $\frac{a b^{2}-a b}{2-2 a b}$
D. $\frac{r+2 s}{4 s-2 r}$

QUESTION 7

The domain of the function $y=-x^{2}+2$
A. $(-2,2)$
B. $(-2,0)$
C. $(0,2)$
D. $(2,-2)$

QUESTION 8

$t^{3}-8$ can be expressed as
A. $(t-8)^{3}$
B. $(t-2)\left(t^{2}-2 t+4\right)$
C. $(t-2)\left(t^{2}+2 t+4\right)$
D. $(t-2)\left(t^{2}-t+4\right)$

QUESTION 9

If $\log _{4} x=\frac{1}{2}$ then what is the value of $x ?$
A. 4
B. -2
C. 2
D. -4

QUESTION 10

The graph of the rational function $y=\frac{x+3}{x-2}$ has a
A. vertical asymptote at $x=-3$
B. horizontal asymptote at $y=2$
C. vertical asymptote at $x=2$
D. horizontal asymptote at $x=-3$

QUESTION 11

Which of these terms does not mean "data item"?
A. score
B. value
C. average
D. measurement

QUESTION 12

The spread of a frequency distribution is measured by:
A. mean
B. median
C. standard deviation
D. average

QUESTION 13

The value of 6 factorial (6!) is :
A. 36
B. 720
C. 6
D. 6^{6}

QUESTION 14

The number of permutations of 5 objects is:
A. 25
B. 5
C. 5^{5}
D. 120

QUESTION 15

Two events are mutually exclusive if on one trial of an experiment:
A. both must occur
B. exactly one must occur
C. exactly one may occur
D. both may occur

QUESTION 16

Which of these is the best option?
A congruent shape has all corresponding
A. angles equal
B. sides equal
C. sides and angles equal
D. none of the above

QUESTION 17

Find the side marked y if $A B C=P R Q$. All measurements are in the same unit.

A. 8
B. 12
C. 10
D. 4

QUESTION 18

A circle $x^{2}+y^{2}+2 x-2 y-1=0$ expressed in the following form $(x-h)^{2}+(y-k)^{2}=r^{2}$ where h, k are the coordinates of the centre and r the radius is given as:
A. $x^{2}+y^{2}=4$
B. $(x+2)^{2}+(y-2)^{2}=3^{2}$
C. $(x-2)^{2}+(y+2)^{2}=3^{2}$
D. $(x+1)^{2}+(y-1)^{2}=3$

QUESTION 19

Which is a geometric progression?
A. $1,3,4,7,9$, \qquad
B. $1,3,5,7,9$, \qquad
C. $1,2,4,9,16$, \qquad
D. $1,3,9,27,81, \ldots \ldots$.

QUESTION 20

Which is an arithmetic progression?
A. $1,3,4,7,9$, \qquad
B. $1,2,4,8,16$, \qquad
C. $1,3,9,27,81, \ldots \ldots$
D. $4,2,0,-2,-4, \ldots \ldots$

QUESTION 21

Which of the following sequence is not geometric?
A. $1,-1,1,-1,1, \ldots \ldots$.
B. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$,
C. $-2,4,-8,16, \ldots \ldots$
D. $-2,3,-4,5,-6$, \qquad

QUESTION 22

If $\mathrm{D}=\{1,3,5\}, \mathrm{E}=\{3,4,5\}, \mathrm{F}=\{1,5,10\}$, then $(D \cup E) \cup F$ is:
A. $\{1,3,4,5\}$
B. $\{1,5\}$
C. $\{1,3,4,5,10\}$
D. $\{1,3,5,10\}$

QUESTION 23

If $\cos \theta=\frac{2}{3}$, find θ where $180^{\circ}<\theta<360^{\circ}$.
A. 48.18°
B. 221.81°
C. 213.69°
D. 311.82°

QUESTION 24

If $\overrightarrow{O A}=3 \mathrm{i}+5 \mathrm{j}$ and $\overrightarrow{O B}=5 \mathrm{i}-2 \mathrm{j}$, find $\overrightarrow{A B}$ (where O is the origin)
A. $-2 \mathrm{i}-7 \mathrm{j}$
B. $2 \mathrm{i}-7 \mathrm{j}$
C. $-2 i+7 j$
D. $2 \mathrm{i}+7 \mathrm{j}$

QUESTION 25

Find the approximate area of the shaded region, given that the area of the sector is approximately 13.08 square units.

A. 10
B. $2 \sqrt{21}$
C. 4
D. $4 \sqrt{5}$

QUESTION 26

Evaluate the following expression $(\sin \theta-\cos \theta)^{2}+(\sin \theta+\cos \theta)^{2}$
A. 2
B. 1
C. $\frac{1}{2}$
D.
0

QUESTION 27

The equation of the tangent to the curve $y=\left(x^{2}-1\right) x$ at the point $(1,0)$ is
A. $y=\frac{1}{4} x-\frac{9}{8}$
B. $y=\frac{1}{4} x+\frac{9}{8}$
C. $y=-\frac{1}{4} x+\frac{9}{8}$
D. None of the above

QUESTION 28

The two stationary points on the curve $y=\frac{2 x}{x^{2}+1}$ are
A. $(1,-1)$ and $(-1,1)$
B. $(-1,1)$ and $(1,1)$
C. $(1,1)$ and $(-1,-1)$
D. none of the above

QUESTION 29

The motion of a particle is described by the law $s(t)=t^{3}-2 t^{2}+t+1$ where t is in seconds and s is in metres. Its velocity after two (2) seconds is:
A. $5 \mathrm{~m} / \mathrm{s}$
B. $3 \mathrm{~m} / \mathrm{s}$
C. $1 \mathrm{~m} / \mathrm{s}$
D. None of the above

QUESTION 30

The first derivative of $y=x^{3}+2 x^{2}+3 x-4$ is
A. $3 x^{3}+2 x+3$
B. $3 x^{2}+2 x+3$
C. $3 x^{2}+4 x+3$
D. $3 x^{2}+4^{2} x+3$

SECTION B : 20 SHORT ANSWER QUESTIONS.

Each question is worth 1 mark.

QUESTION 31

Rationalize the denominator $\frac{2}{\sqrt{2}+1}$

QUESTION 32

Write the recurring decimal 0.33 as a fraction.

QUESTION 33

Factorize $x^{2}-4$

QUESTION 34

Sketch the region satisfied by the inequality $2 y+x \leq 1$.

QUESTION 35

Find the positive solution of the equation $x^{2}-2=0$.

QUESTION 36

Sketch the graph of $y=\frac{1}{x+2}$.

QUESTION 37

Is it possible to calculate the exact average of a grouped frequency distribution?

QUESTION 38

How many combinations of 5 objects from 7 are there?

QUESTION 39

How many sides does a regular polygon whose angles total 900° have?

QUESTION 40

Find the line that is perpendicular to
$y=\frac{-3}{4} x+2$ and passes through $(3,4)$.

QUESTION 41

Calculate the arc length that subtends an angle of 55° at the centre of a circle with radius $\mathrm{r}=$ 5 cm .

QUESTION 42

Use the binomial expansion
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$ to expand and simplify $(x-3)^{4}$.

QUESTION 43

Given that $A=\{1,3,5,7,9\}$ and $B=\{2,4,6,7,8,9,10\}$. Find $A \cap B$.

QUESTION 44

Find the $10^{\text {th }}$ term of the geometric sequence 16,8,4,2,1,

QUESTION 45

If $\cos ^{-1}\left(\frac{4}{5}\right)$ is θ, what is $\sin \theta ? \quad 0<\theta<\frac{\pi}{2}$

QUESTION 46

Sine rule and cosine rule are both used in solving trigonometry problems. Give an example of when the cosine rule is more applicable than the sine rule?

QUESTION 47

If $a=2 i-j$ and $b=-i+3 j$, what is the vector labelled c ? Write in terms of i, j components.

QUESTION 48

Find $\frac{d y}{d x}$ if $y=\frac{1}{8}$.

QUESTION 49

Find the gradient of the tangent line to the graph of $y=3 x^{2}-x+1$ at the point where $\mathrm{x}=-1$.

QUESTION 50

Does the parabola $y=-3 x^{2}+2 x-1$ have a maximum or minimum value?

